Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT.

نویسندگان

  • Andreas Maier
  • Lars Wigstrom
  • Hannes G Hofmann
  • Joachim Hornegger
  • Lei Zhu
  • Norbert Strobel
  • Rebecca Fahrig
چکیده

PURPOSE The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. METHODS 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. RESULTS The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold speed-up of the processing (from 1336 to 150 s). CONCLUSIONS Adaptive anisotropic filtering has the potential to substantially improve image quality and/or reduce the radiation dose required for obtaining 3D image data using cone beam CT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artifact reduction techniques in Cone Beam Computed Tomography (CBCT) imaging modality

Introduction: Cone beam computed tomography (CBCT) was introduced and became more common based on its low cost, fast image procedure rate and low radiation dose compared to CT. This imaging modality improved diagnostic and treatment-planning procedures by providing three-dimensional information with greatly reduced level of radiation dose compared to 2D dental imaging modalitie...

متن کامل

Metal Artifact Reduction of Dental Fillings in Head and Neck CT Images

Introduction: The issue of metal artifact and its reduction is as old as the clinical use of computed tomography itself. When metal objects such as dental fillings, hip prostheses or surgical clips are present in the computed tomography (CT) field of view (FOV), make severe artifacts that reduce the image quality and accuracy of CT numbers. They can lead to unreliable ...

متن کامل

Shearlet-Based Adaptive Noise Reduction in CT Images

The noise in reconstructed slices of X-ray Computed Tomography (CT) is of unknown distribution, non-stationary, oriented and difficult to distinguish from main structural information. This requires the development of special post-processing methods based on the local statistical evaluation of the noise component. This paper presents an adaptive method of reducing noise in CT images employing th...

متن کامل

Coherence Filtering to Enhance the Mandibular Canal in Cone-beam Ct Data

Segmenting the mandibular canal from cone beam CT data, is difficult due to low edge contrast and high image noise. We introduce 3D coherence filtering as a method to close the interrupted edges and denoise the structure of the mandibular canal. Coherence Filtering is an anisotropic non-linear tensor based diffusion algorithm for edge enhancing image filtering. We test different numerical schem...

متن کامل

Comparisons of Hounsfield Unit Linearity between Images Reconstructed using an Adaptive Iterative Dose Reduction (AIDR) and a Filter Back-Projection (FBP) Techniques

Background: The HU linearity is an essential parameter in a quantitative imaging and the treatment planning systems of radiotherapy. Objective: This study aims to evaluate the linearity of Hounsfield unit (HU) in applying the adaptive iterative dose reduction (AIDR) on CT scanner and its comparison to the filtered back-projection (FBP).Material and Methods: In this experimental phan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 38 11  شماره 

صفحات  -

تاریخ انتشار 2011